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Dyslexia is a specific learning disorder characterized by difficulties with accurate spelling, poor fluency, and 
decoding abilities. This study investigated the passive hearing abilities and sound conduction through skull 
bone resonance in dyslexic children to determine the relationship between skull and sinus hearing ability. 
Thirty children diagnosed with dyslexia according to DSM-5 criteria were selected, and their skull bone 
resonance was measured using a customized bone conduction microphone and preamp microphone 
affixed to the forehead. Results showed that 73.3% of the dyslexic children had abnormal sound 
conduction, categorized into damping (31.3%), resonance (18.2%), and rumbling (50%) abnormalities. 
Significant lateralization differences were found, with more abnormalities on the right side of the skull. The 
frontal, maxillary, and mastoid sinuses exhibited damping, resonance, and rumbling abnormalities, with 
rumbling being the most significant finding (38.2%). The study suggests that phonological deficits in 
dyslexia may be attributed to skull involvement in fine auditory processing, and the condition of skull bone 
cavities and sinuses might play a role in the phonological processing of dyslexic children. The findings 
highlight the importance of investigating skull sinus conditions as a potential factor affecting sound 
processing in neurodevelopmental disorders. 
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1. INTRODUCTION

Dyslexia is a specific learning disorder characterized by difficulties in accurate spelling, reading fluency, and 

decoding abilities1. In Egypt, the prevalence of dyslexia among primary school children has been reported to be 

11.7% 2. Globally, dyslexia affect between 5% and 17% of school-aged children, depending on the population 

studied 3. Practical classifications of dyslexia are based on the dominant type of cognitive impairment 4. Among 

these, phonological dyslexia is considered the most prevalent, surpassing both visual (orthographic) and mixed 

types 5. 

Cognitive skills are the most extensively studied aspect of dyslexia, including deficits in auditory frequency 

discrimination, perception of amplitude modulation, stream segregation, and spatial sound processing 6. A 

comprehensive review of potential causes of dyslexia highlighted the significance of auditory and visual sensory 

perception in the development of reading difficulties. However, it concluded that most current research remains 

at a superficial level and lacks a thorough understanding of the underlying sensory processing deficits 7,8,5 . 

Most existing studies have focused on central neural mechanisms, including reduced activation in specific brain 

regions 9 and dysfunctions at the brainstem level 10. Fewer studies have addressed peripheral auditory structures, 

and only limited attention has been given to the role of the inner, middle, and outer ears in dyslexia 1,11. Notably, 

the influence of skull bone structure and sinus cavities on sound conduction has been largely overlooked in 

current literature, despite their possible role in shaping auditory perception. 

This study aims to address this gap by evaluating passive auditory transmission and skull bone resonance in 

children with dyslexia by examining passive hearing and sound conduction via skull bone resonance in children 

with dyslexia. We hypothesize that children with dyslexia may present with pathological or morphological 

differences in the skull sinuses that influence their auditory processing. By analyzing the resonance of skull bone 

cavities, this research aims to determine whether abnormalities in sinus and skull structure contribute to 

phonological deficits. Understanding this potential link may provide a new, non-invasive, and cost-effective 

pathway for early identification and intervention in children with dyslexia. 

2. METHODOLOGY

A. STUDY DESIGN AND PARTICIPANTS

This cross-sectional study enrolled 30 children (22 males, 8 females), aged 6 to 14 years, diagnosed with specific

learning disorder (dyslexia) according to Diagnostic and Statical Manual of Mental Disorder, 5th edition (DSM-

5 2013) 12, from December 2023 to July 2024 who demonstrated average intellectual functioning. Children with

hearing impairments, craniofacial anomalies (such as dwarfism or achondroplasia), or a history of ear or skull

surgeries were excluded. Participants were recruited from the Special Needs Children Care Center at the Faculty

of Postgraduate Childhood Studies, Ain Shams University, Cairo, Egypt. The study received ethical approval

and adhered to the principles outlined in the Declaration of Helsinki.

B. APPARATUS AND MATERIALS

In this study, children were seated individually in a sound-isolated RC25 room to minimize external acoustic

interference. They were exposed to continuous broadband Gaussian noise emitted from a standard loudspeaker

positioned one meter away. The noise stimulus covered a frequency range from 20 Hz to 20,000 Hz and was

presented at an intensity of 70 dB HL. An array of microphones was employed: two air-conduction microphones

were placed near the external ear canal openings to capture signals transmitted via air pathways, while six bone-

conduction microphones were affixed to anatomical landmarks corresponding to the frontal, maxillary, and

mastoid sinus regions to record cranially transmitted acoustic energy. Second, using a flexible rubber grommet

to ensure firm contact and minimize air leakage. Signal acquisition via an STM32 microcontroller, sampling at

48 kHz with 24-bit resolution.

The recorded signals were analyzed using Short Time Fourier Transform (STFT) techniques. A Hanning window 

function was applied to minimize spectral leakage and enhance frequency resolution. enhance the fidelity of 

frequency domain representation. A 1000 ms window with a 10 ms frame shift was used, resulting in a 99% 

overlap. This setting allows high frequency resolution while maintaining temporal continuity Spectral 13. energy 

was evaluated across standardized octave bands ranging from 63 Hz to 16 kHz, aligning with conventional 

acoustic analysis protocols, consistent with conventional octave-band analysis standards in acoustics. 
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Figure 1. The acquisition device illustrating the test procedures 

C. TEST PROCEDURES

The experimental protocol proceeded through multiple structured steps. Initially, the sound radiated from the

loudspeaker was detected by the microphone array. Subsequently, the recorded signals underwent STFT analysis

to extract energy distributions across both time and frequency domains. The resulting spectral data were

compiled into graphical and tabular representations to illustrate the energy present at each time-frequency point.
These representations were then aggregated (Aggregation refers to the temporal stacking of frequency

components to extract dominant energy trends over time )14 to reconstruct the overall energy distribution

throughout the recording session. Finally, source classification techniques were applied to differentiate valid

sinus resonance signals from potential artifacts such as environmental noise or mechanical disturbances, audio
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signals were screened manually by a trained listener. In cases of artifact detection, the measurement was 

repeated, thereby ensuring the integrity and reliability of the data. 

This structured methodological approach enabled the specific characterization of resonance phenomena within 

the nasal sinuses, providing a detailed understanding of their acoustic 

behavior under controlled broadband excitation. 

Figure 2. Block diagram of the measurement and data collection process steps 

D. ESTIMATION OF RESONANCE FREQUENCIES

In this paper, we also calculated as shown in table 1The initial resonance frequency for each cavity was

determined using cavity size data from 15 in their study, "Assessing Volume Growth of Paranasal Sinuses and

Nasal Cavity in Children Using Three-Dimensional Imaging Software”. For enhanced accuracy, this study also

considered the findings of 16,17,18, who measured the normal sinus cavity in children according to sex and age.

The quality of changes between two ages was calculated as a relative difference between the averages of

volumetric indices at the beginning and end of each stage. We calculated the cavity volume according to sex and

age as V1, representing the geometric equivalent of the three dimensions, which were constructed to estimate

size variation.

V1 =  √(𝑙𝑒𝑛𝑔𝑡ℎ 𝑥 𝑏𝑟𝑒𝑎𝑑𝑡ℎ 𝑥 ℎ𝑒𝑖𝑔ℎ𝑡3   (1) 

And using the equation of: 

𝑓 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =  
v

2𝜋
 √

A

VL
 (2) 

where v = 344 m s⁻¹ is the speed of sound, A is the area of the opening, L is the length of the nasal cavity 

port, and V is the volume of the air enclosed.  

Table 1: The resonance frequency of skull cavities (Frontal, Maxillary, and Mastoid sinus) as the volume calculated 

from three-dimensional imaging in children according to age and sex difference  

Male Female 

Age Frontal 

cavity Freq. 

(Hz) 

Maxillary 

cavity Freq. 

(Hz) 

Mastoid 

cavity Freq. 

(Hz) 

Frontal 

cavity Freq. 

(Hz) 

Maxillary 

cavity Freq. 

(Hz) 

Mastoid 

cavity Freq. 

(Hz) 

5, 6 5,363 1,772 1,313 1,899 1,822 2,092 

7, 8 5,363 1,408 1,313 2,118 1,639 2,334 

9 5,363 1,412 1,313 2,184 1,662 2,367 

10 5,363 1,412 1,313 2,184 1,372 2,367 

11 5,363 1,255 1,313 2,190 1,329 2,292 

13 1,621 1,157 929 2,104 1,185 2,202 

14 1,621 1,157 929 2,028 1,142 2,122 

15 1,621 1,157 929 1,959 1,103 2,050 

This finding is consistent with CT-based calculations showing that resonance frequency differences between 

boys and girls are not due to sinus volume but rather due to differences in sinus port length and area (L and A), 

where boys typically have wider and shorter ports, significantly affecting resonance frequency according to the 

Helmholtz formula 19,20. 

1- Sound

Emission from

loudspeaker

(20-20000 Hz,

70dB HL)

2-Signal

detection by

receivers

(around the

cranial region)

3-Short-time

Fourier transform

(STFT) analysis

of received signal

4-Aggregation

into energy –

time freq.

graphs and

tables

5-Source

classification

(To identify

valid signals and

Eliminate

Noise)
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3. RESULTS

The information and analysis of the results had been obtained from sample of thirty (30) children, diagnosed as 

Specific Learning Disorder (SLD) (Dyslexia) according to DSM-5. Twenty-two (22) males, and eight (8) 

females, with age range from 6-14 years old, were divided into two groups: group of dyslexic children showed 

normal sound conduction of passive hearing abilities based on the skull bone cavities response to Gaussian noise 

(20-20,000 Hz, 70 dB HL). The number of this group were eight (n=8), 6 males and 2 females, six dyslexic 

children in the normal sound conduction group ranged from 6-9 years with mean 8.33 (±1.2), while two children 

ranged from 10-14 years with mean 12.75 (±1.7). In this study, we compared the sound frequency considered as 

“normal” sound conduction of passive hearing abilities based on the skull bone cavities’ response to Gaussian 

noise, to the “normal” sound frequency calculated based on three-dimensional neuroimaging of the skull sinuses 

according to age. 

The result shows no significant difference (p < 0.05), as seen in Table (2), denoting the coincidence of the sound 

frequency based on Gaussian noise response and the sound frequency based on 3D neuroimaging of the skull’s 

frontal, maxillary, and mastoid sinuses. We showed that the acoustic characteristics determined by the two 

methods are typically statistically matched, providing high accuracy and reliability of the measured skull bone 

cavity technique. 

Table 2: comparison between normal cavity frequency of left and right Frontal, Maxillary, and Mastoid sinus cavity 

and the calculated standard frequency in each sinus of the eight dyslexic children according to their age 

Age 6 8 9 9 9 9 11.5 14 Z test P value 

Cavity freq. frontal 

(Lt.) 

5368 5365 5367 5368 2184 2188 5366 1627 1.498 0.134 

Cavity freq. frontal 

(Rt.) 

5368 5366 5368 5366 2188 2189 5367 1628 1.603 0.109 

Calculated standard 

Frontal 

5363 5363 5363 5363 2184 2184 5363 1621 

Cavity freq. Maxillary 

(Lt.) 

1771 1410 1414 1419 1662 1672 1258 1155 0.316 0.752 

Cavity freq. Maxillary 

(Rt.) 

1771 1409 1419 1418 1666 1677 1256 1155 0.421 0.674 

Calculated standard 

Maxillary 

1772 1408 1412 1412 1662 1662 1255 1157 

Cavity freq. Mastoid 

(Lt.) 

1313 1317 1315 1315 2367 2366 1313 925 0.660 0.509 

Cavity freq. Mastoid 

(Rt.) 

1313 1318 1315 1319 2366 2369 1314 925 1.025 0.305 

Calculated standard 

Mastoid 

1313 1313 1313 1313 2367 2367 1313 929 

The other group of the results was the group of dyslexic children who showed abnormal sound conduction of 

passive hearing abilities based on the skull bone cavities response to Gaussian noise (20-20,000 Hz, 70 dB HL). 

This group consisted of twenty-two children with dyslexia (n= 22), 16 males, and 6 females. Thirteen children, 

age ranged from 6-9 years with mean 7.92 (±2.1), and 9 children their age ranged from 10-14 years with mean 

10.50 (±1.6) as shown in table (3). 
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Table 3: Shows Age, and Sex differences of normal and abnormal sound frequencies based on the skull bone 

cavities response to Gaussian noise in children with Dyslexia. 

Normal sound Freq. (N=8) Abnormal sound Freq. (N=22) 

Age N % Mean SD N % Mean SD 

6-9 6 75% 8.33 1.21 13 59.1% 7.92 2.17 

10-14 2 25% 12.75 1.76 9 40.9% 10.50 1.62 

Total 8 100% 9.43 2.38 22 100% 8.97 2.23 

Sex N % N % 

Male 6 75% 16 72.7% 

Female 2 25% 6 27.3% 

Furthermore, the abnormal sound conduction group (n=22) were categorized into three different distinguished 

groups including: the “Damping” abnormality group showed frequency ranging between (20-500 Hz) (low 

frequency ranges), the “Resonance “abnormality group (2KHz-20KHz) (High frequency ranges). “Rumbling” 

abnormality group at frequency (20-500 Hz) and (2KHz-20KHz) (low and high frequency ranges). 

As regards sex difference, males in the damping group were (n=5) (31.3%), resonance group were (n=3) (18.8%), 

and Rumbling group were (n=8) (50%) of the male group (n=16), while the females were (n=2) (33.3%) in 

damping group, and (n=2) (33.3%) in resonance group, and (n=2) (33.3%) in rumpling group of significance 

difference (p=0.03) showing more abnormality of the skull bone cavity resonance in boys. 

As regards age groups, the younger group age ranged from 6-9 years (n=13), the damping abnormality were 

(n=5) (38.%), resonance abnormality (n=2) (15.4%), and rumbling abnormality (n=6) (46.2%), while the elder 

group age ranged from 10-14 years (n=9), the damping abnormality (n=2) (22.3%), resonance abnormality (n=3) 

(33.3%), while rumbling abnormality (n=4) (44.4%) showing no significance difference between younger and 

elder age groups (p=0.4) while the highest percentage of abnormality was the rumbling abnormal sound 

frequency. 

As regards the skull sinuses (Frontal, Maxillary, and Mastoid), the total abnormalities of the sound frequencies, 

(Damping, Resonance, and Rumbling) on the right-side sinuses of the skull (n=55). Damping abnormality on 

right side sinuses were (n=12) with (21%), Resonance (n=14) with (25.5%), while rumbling (n=21) with (38.2%) 

with highly significant difference with (P=0.001) towards the rumbling abnormality, while the total 

abnormalities of the sound frequencies on the left side sinuses of the skull (n=14), damping abnormality on the 

left side sinuses were (n=6) with (42.9%), resonance (n=0) with (0%), while rumbling (n=0) with (0%) with no 

significant difference for (P=0.3). Results showed highly significant right side skull rumbling sound abnormality, 

as shown in table (4). Extreme values were used to reflect peak resonance. All tables now describe frequency 

bands and statistical values explicitly. 

I.Y. Noshokaty et al. Passive hearing abilities of dyslexia children

Proceedings of Meetings on Acoustics, Vol. 55, 015003 (2025) Page 6

 28 M
ay 2025 07:00:49



 

Table 4: Shows the abnormal sound frequencies damping, resonance, rumbling abnormalities on right and left 

skull lateralization of %the Frontal, Maxillary, and Mastoid Sinus  

Sample 

Variables 

Damping Resonance Rumbling All 

(d+res+rum) 

(res+rum) χ2 p-value 

N % N % N % N % N % 

Frontal (Rt)  4 18.2 5 22.7 7 31.8 1 4.5 2 9.1 7.444 0.1 

NS 

Frontal (Lt)  2 9.1 0 0 0 0 1 4.5 2 9.1 13.866 0.008 

HS 

Maxillary (Rt)  4 18.2 5 22.7 7 31.8 1 4.5 2 9.1 7.444 0.1 

NS 

Maxillary (Lt)  2 9.1 0 0 0 0 1 4.5 2 9.1 13.866 0.008 

HS 

Mastoid (Rt)  4 18.2 4 18.2 7 31.8 0 0 2 9.1 7.683 0.1 

NS 

Mastoid (Lt)  2 9.1 0 0 0 0 1 4.5 2 9.1 12.897 0.02 

S 

Total Right side 

of the Skull 

Sinuses 

12 21.8 14 25.5 21 38.2 2 3.6 6 10.9 19.636 0.001 

H.S. 

Total Left side 

of the Skull 

Sinuses 

6 42.9 0 0 0 0 2 14.2 6 42.9 2.286 0.3 

NS 

*d = damping, res = resonance, rum = rumbling 

4. DISCUSSION  

This study aimed to utilize an acoustic cavity resonance measurement technique to explore anatomical and 

pathological variations affecting the nasal and paranasal sinuses in a safer and easier manner compared to 

conventional X-ray and CT imaging.  

Our findings highlighted the role of skull bone cavity resonance in children with dyslexia, a previously under-

investigated area. Approximately 73% of dyslexic children in our study exhibited abnormal passive sound 

transmission patterns through the skull cavities, consistent with previous reports of altered auditory processing 

in this population 21,22. Traditionally, based on the conventional theory of speech sound production, the acoustical 

function of the paranasal sinuses has been considered secondary as side branches. However, 23, in their study 

"Acoustic Analysis of Detailed Three-Dimensional Shape of the Human Nasal Cavity and Paranasal Sinuses," 

suggested that the paranasal sinuses contribute to the generation of sound peaks, implying that they act not only 

as side branches but also as resonators. This finding aligns with studies showing that more dyslexic children than 

controls demonstrated clinically significant reductions in dichotic listening performance, although no consistent 

pattern of deficit emerged 24. Further studies using direct sweep-tone measurements of nasal tract transfer 

functions also indicated that nasal sinuses should be considered as a relevant part of the acoustic system. The 

addition of at least two shunting cavities to the nasal structure in models of the speech organs was shown to 

improve the spectrum for nasals and nasalized vowels at lower frequencies 25.  

These findings suggest that anatomical or pathological variations affecting skull cavity acoustics may contribute 

to the phonological processing difficulties commonly observed in dyslexia, which is an important factor 

underlying or associated with reading impairments in this population 26. 

In this study, three types of abnormalities were detected: damping (31.8%), resonance shifts (27.2%), and 

rumbling (40.9%). These results suggest that physical or pathological changes affecting sinus morphology or 
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cavity media may be present in dyslexic children. Medical research on nasal sinuses has explored various 

pathological conditions that could interfere with normal sound wave propagation in the skull cavity, reproducing 

damping, resonance, and rumbling effects: 

- Damping abnormalities may result from air-fluid levels or complete opacification due to sinusitis, commonly

observed in 60% of sinusitis cases, particularly in maxillary and frontal sinuses 27. Sinusitis affects about 5%

of children aged 5–9 years and 15% of adolescents, with a higher prevalence in males 28. The presence of

fluid significantly influences acoustic wave propagation by enhancing attenuation through increased

interaction with the fluid medium 29,30.

- Resonance shifts are likely due to alterations in sinus port dimensions. Studies have shown that frontal and

maxillary sinus volumes may increase as a compensatory mechanism following severe nasal septal deviation

(NSD). The frequency of NSD is about 86.6% and increases with age, predominantly in males 31,32,33. An

enlarged cavity lowers the natural resonance frequency, allowing longer wavelength sound waves to resonate

more effectively, resulting in louder perceived sounds34.

- Rumbling patterns represent complex acoustic phenomena, likely due to cavity interference effects. Sinus

mucosa thickening is one of the most common sinus pathologies, with a reported frequency between 34%

and 66%, and the membrane thickness reaching 2–4 mm in many cases  35. Irregular or rough wall surfaces

disrupt uniform sound propagation, causing scattered reflections that manifest as phase irregularities and low-

frequency rumbling sounds 34. Furthermore, septa formation within the sinuses due to embryological

development can create multiple coupled resonators, leading to complex sound wave interactions and

rumbling effects 36,37.

Additionally, the "Fizz sign” - the presence of gas bubbles within the sinuses - is often indicative of acute sinusitis 
38. From an acoustic perspective, these gas bubbles disrupt normal sound propagation, leading to complex

scattering and secondary wave generation known as acoustic cavitation, contributing to rumbling or buzzing

sounds 39.

Significant sex differences were observed in this study, with males showing a higher prevalence of sound 

conduction abnormalities (72.7%) compared to females (27.3%). This aligns with epidemiological data 

indicating that dyslexia is more prevalent among males, with odds ratios ranging from 1.5:1 to 3.3:1 26,40. Sexual 

dimorphism in auditory cortex anatomy and hemispheric asymmetry has been reported in dyslexia, especially in 

males 41. These anatomical differences may contribute to the higher rates of paranasal sinus pathologies observed 

in males before puberty. Additionally, male skull cavities tend to be larger, leading to variations in the location 

and size of sinus ostia, which can affect sound conduction 42. 

This finding is consistent with CT-based calculations showing that resonance frequency differences between 

boys and girls are not due to sinus volume but rather due to differences in sinus port length and area (L and A), 

with boys typically having wider and shorter ports, significantly affecting resonance frequency according to the 

Helmholtz formula. 

Regarding lateralization, a right-side predominance of abnormalities was evident. Abnormalities were more 

frequent on the right side for damping (21.8%), resonance shifts (25.5%), and rumbling (38.2%), while damping 

was higher on the left side (42.9%) with no resonance or rumbling abnormalities recorded. This difference was 

statistically significant (p = 0.001). 

This lateralization pattern supports classical theories such as Orton’s (1937) "lateralization theory of dyslexia," 

which postulated deviant cerebral lateralization in dyslexic children. More recent studies have confirmed 

relationships between lateralization patterns and reading impairments 43,44. Anatomical studies have also shown 

a predominance of right-sided frontal sinus pathology 45,46 and septal deviations resulting in asymmetric mastoid 

sinus volumes favoring the right side 47. 

Future research should integrate acoustic assessments with imaging techniques to better map the anatomical 

correlates of resonance abnormalities. Longitudinal studies are also needed to determine whether skull resonance 

profiles could serve as early biomarkers for dyslexia and related neurodevelopmental disorders. 

5. LIMITATIONS AND FUTURE DIRECTIONS

This study has several limitations: 

- The relatively small sample size limits the generalizability of findings, necessitating replication in larger,

more diverse cohorts.

I.Y. Noshokaty et al. Passive hearing abilities of dyslexia children

Proceedings of Meetings on Acoustics, Vol. 55, 015003 (2025) Page 8

 28 M
ay 2025 07:00:49



- A control group of typically developing children, matched for age and sex, was not included, which is

important for validating resonance pattern findings.

- Direct comparisons between resonance frequency abnormalities and pathological findings from

neuroimaging were not conducted.

- High-resolution imaging (e.g., CT scans) was not performed to confirm anatomical variations directly.

- Comorbid conditions such as allergic rhinitis, which may affect sinus resonance, were not systematically

excluded.

6. CONCLUSION

This study investigated the passive hearing ability and sound conduction using skull bone resonance in 30 

children diagnosed with dyslexia. The results showed that 73.3% of children with dyslexia had abnormal sound 

conduction, categorized as damping (31.3%), resonance (18.2%), and rumbling (40.9%) abnormalities. 

Significant lateralization differences were observed with more abnormalities on the right side of the skull. The 

frontal, maxillary, and mastoid sinuses exhibited damping, resonance, and rumbling abnormalities, with 

rumbling being the most significant finding. This study suggests that phonological deficits in dyslexia may be 

attributed to skull involvement in fine auditory processing and highlights the importance of investigating skull 

sinus conditions as a potential factor affecting sound processing in children with dyslexia. The skull bone cavity 

resonance measurement technique can be utilized in specialized cranial cavities, providing a safer and more 

convenient method of assessment, as this technique is particularly beneficial for pediatric patients as it does not 

involve radiation exposure. Furthermore, it is a cost-effective approach, where the skull bone cavity resonance 

measurement technique can be effectively employed in cases of pediatric disorders, requiring only 5-10 minutes 

with minimal regulatory requirements and precautions. 
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